

Outline

- Primary Beam Overview
- Checkout
- Organization
- Requirements for CD-4
- Commissioning Plan & Schedule
- "Early Beam" Commissioning

Scope: Describe major activities to achieve multi-batch mixed mode operation of 2.5E13 protons/2 sec

Primary Beam

MI-60 Region

NuMI Stub
156 mrad bend

Pretarget Enclosure

98 mrad up-bend & target focus

Components

- 3 Kicker magnets and 3 Lambertsons in the MI
- 16 major bend magnets (refurbished)
- 19 MI style correctors
- 21 quadrupole magnets (refurbished)
- 10 profile monitors (UT-Austin)
 - « Low loss design 5 micron Ti foils
- 24 beam position monitors
 - « Digital receiver electronics similar to Recycler
 - « Multi-batch position and intensity
- 2 Toroids
- 53 beam loss monitors & 4 total loss monitors
- Resistive Wall Monitor
- Optical Transition Radiation detector
 - « imaging profile monitor

New devices
Not in project scope

New electronics

New device

NuMI Apertures

Maximal Beam Sizes, 500pi & 3E-3, vs Clearances 09/27/02

Worst Case Main Injector Beam

Shielding for the Recycler

Checkout

- We recognize the need to perform a methodical checkout to ensure efficient beam commissioning
- Support groups are performing the usual QC steps during checkout
- Physicists are performing additional QA on most systems
 - « Ex: Verify ACNET readout, Beam Permit System (BPS) operation during power supply tests
- We anticipate these people will participate in commissioning studies for their systems, analyze data and present results to the group

Instrumentation Checkout Assignments

Subsystem	Hardware Expert	Software Expert	Physicist			
BLM	Marv Olsen	Brian Hendricks Lin Winterowd	Gordon Koizumi			
TLM	Dan Schoo	(Param. Pages) Peter Lucas	Gordon Koizumi			
BPM	Peter Prieto	Brian Hendricks Lin Winterowd	Sam Childress			
Profile Mon/. PM Drive	D. Schoo,Gianni Tassotto/ Al Legan	Jimmy You Junye Wang	Sacha Kopp Debbie Harris			
Toroid	Brian Fellenz	(BBM) Bill Marsh	Doug Jensen			
RWM	Brian Fellenz	n.a.	Doug Jensen			
Instr. Timing	G. Tassotto P. Prieto		S. Childress			

Checkout Status Example

Component Name	Stand	Item on	Rough	Final	Vacuum	Under	Electrical	Water	Air/Gas/	Quad	Ac N	Ac N
Walk 11/11/04 10:00AM	Installed	Stand	Aligned	Aligned	Connection	Vacuum	Connect	Connect	Fluorinert	Cool Plate	Dev	Dev
									Connect		#	ok
Kicker 1	1	1	1	1	1	1	1	1	1		11	
Loss Mon I:LMNKMA US side	1	1					1				1	
Kicker 2	1	1	1	1	1	1	1	1	1		10	
Loss Mon I:LMNKMB DS side	1	1					1				1	
Kicker 3	1	1	1	1	1	1	1	1	1		10	
Loss Mon I:LMNKMC DS side	1	1					1				1	
LAM60	1	1	1	1	1	1	1	1			1	
Loss Mon I:LML60 US bot frt	1	1					1				1	
Q608	1	1	1	1	1	1	1	1				
LAM61A	1	1	1	1	1	1	1	1			1	
Loss Mon I:LML61A US bot frt	1	1					1				1	
LAM61B	1	1	1	1	1	1	1	1			0	
Loss Mon I:LML61B US bot frt	1	1					1				1	
Gate Valve CLOSED	1	1	1	1	1	1	1		1		1	
Spool	1	1	1		1	1					0	
V100	1	1	1		1	1	1	1			1	
Loss Mon E:LMV100 US side	1	1					1				1	
Spool vertical jog; 1 IP	1	1	1		1	1	1				1	
Q101 - D	1	1	1	1	1	1	1	1			1	
Loss Mon E:LMQ101 US top	1	1					1				1	
Spool; 1 IP	1	1	1	1	1	1	1				1	
Ceramic Break	1	1	1	1	1	1					0	
BPM-V	1	1	1	1	1	1	1				14	
ВРМ-Н	1	1	1	1	1	1	1				14	
Short Spool		1	1	1	1	1					0	
Profile Monitor	1	1	1	1	1	1	1				12	
Short Spool		1	1	1	1	1					0	
Spool	1	1	1	1	1	1					0	
Resistive Wall Monitor	1	1	1	1	1	1	1					

Technical Components Organization

NuMI Project Level 3 managers are responsible for providing an operating system:

Includes design, fabrication, installation, checkout and commissioning

The commissioning coordinator (Technical Components Manager) is responsible for defining the overall commissioning plan & monitoring progress

CD-4 Goals

The NuMI Project Management Plan describes the Technical Commissioning Goals required to meet CD-4

Goal	Parameter	Measurement	Commissioning Goal				
1	Proton intensity in target hall	Toroid (or equivalent) beam intensity at entrance to the Target Hall	Greater than 1E12 120 GeV protons/spill				
2	Beam alignment	Transverse distributions of the proton beam and secondary beams	Proton direction established to within 1 mr of the known direction to the Far Detector in the Soudan mine.				
3	Neutrino beam energy	Near detector event energy	Low energy, 2-4 GeV				
4	Cosmic ray muons detected in the MINOS near detector	Near detector data read out through DAQ system	Majority of 153 near detector planes sensitive to muons				
5	Near detector neutrino flux	Charged current event rate in 1.5 ton fiducial region	Observer neutrinos in the near detector produced by the NuMI beam				
6	Cosmic ray muons and atmospheric neutrinos detected in each of the two MINOS far detector supermodules	Far detector data read out through DAQ system	Majority of the 484 planes of the far detector sensitive to muons and atmospheric neutrinos				

Commissioning Plan

- NuMI checkout & commissioning activities are tracked using MS Project and Excel
- Pre-commissioning activities
 - « Main Injector Preparations (~65 tasks)
 - « NuMI checkout (200 700 tasks)
 - « Administrative Approvals (~15 tasks)
 - « Operations Preparations (~20 tasks)
- Commissioning
 - « MI/NuMI commissioning (~60 tasks)
 - « Multi-batch mixed-mode (2 tasks)
 - « Turnover to Operations (2 tasks)
- Plan developed in April workshop
 - « Reviewed by DOE and AD management

Administrative Approvals

- The Main Injector Shielding Assessment was revised to allow operation at 4.8x10¹³ protons 2 second cycle
 - « Adequate to support NuMI operations for the next several years
- The NuMI Shielding Assessment was approved
- DOE FSO and ARR team has informally reviewed the MI and NuMI Safety Assessment Documents (and Safety Envelopes)
 - « Comment resolution complete
- SAD's were approved by the Director and formally transmitted to FSO last week
 - « Concurrence expected in the next few weeks

Operations Preparations

Controls needs

- « Add NuMI devices to the ACNET database
- « Develop parameter pages
- « Set up BPS and alarms & limits pages, sequencers
- « Define device list for data-logging
- « Set up data logger
- « Set up Beam Loss Budget Monitor and Beam Budget Monitor

Administration & Training

- « Develop Search & Secure procedures & training
- « Develop emergency response procedures & training
- « Define access requirements, threshold criteria for NuMI operation
- « Develop and conduct operator training, Rookie book
- « Define list of qualified experts

				Proton	Cycle				ND	Approx		
			Special	Intensity	Time	Profile	Tgt	Horn	neutrinos/	Dur		CD-4
Step	Description	Purpose	Req'mnts	(ppp)	(sec)	Mon	Pos	Status	hr/100T	(days)	Day	Goal
			NuMI enabled.									
		NuMI single batch setup.	Kicker off.									
	Main Injector	Ramp timing, Autotune	2 turns									
1	setup	validation	30 bunches	3.E+11	180	ln	Out	Off	0	0.5	0.5	
	First beam to	Beam tuning to observe	No below ground									
2	NuMI	beam profiles	access	3.E+11	180	ln	Out	Off	0	1	1.5	
		Check transport apertures &										
3	Aperture Scan	transport matrix		3.E+11	180	ln	Out	Off	0	1	2.5	
		Check horn alignment with										
4	Horn Alignment	beam scan & tgt pit LM		3.E+11	180	ln	Out	Off	0	0.5	7.5	
	Target/Baffle	Check target/baffle alignment										
5	Alignment - LE	with beam scan & tgt pit LM		3.E+11	180	ln	LE	Off	0	0.5	8.5	
		Observe hadron monitor										
		beam profile. Check magnet										
6	Raise intensity	ramp timing		1.E+12	180	ln	Out	Off	0	1	3.5	1,2
		Calibrate loss monitors &										
	Calibration &	BPM's. Check horn timing										
	first neutrinos	with pit loss monitor?		1.E+12	60	In/Out	ME	On	8	1	4.5	3,5
8	BPS tuning	Tighten BPS inputs		1.E+12	60	Out	ME	On	0	1	5.5	
			BPS trip on high									
		Check dose rates in	intensity/loss ->									
9	Rad Surveys	occupied areas	STD XPRT	1.E+12	180	Out	ME	On	3	0.5	6	
		Check BPM, profile monitor,										
	Monitor position	target, baffle, mu mon & had										
10	sensitivity	monitor sensitivity	BPS STD XPRT	1.E+12	180	ln	ME	Off	0	1	7	
	Target/Baffle	Check target/baffle alignment										
11		with beam scan & tgt pit LM	BPS STD XPRT	3.E+11	180	ln	ME	Off	0	0.5	8	
		Add tgt/baffle/horn inputs to										
		BPS. Define "baseline										
12	BPS tuning	running conditions"	BPS STD	1.E+12	180	Out	LE	On	2	0.5	9	
		Establish Main Injector multi-										
		batch operation. Check NuMI										
		transport & optics	BPS STD	5.E+12	180	Out	LE	On	9	5	14	
	,	Establish standard NuMI										
14	time	cycle time	BPS STD	5.E+12	2	Out	LE	On	783	5	19	

Schedule

- Expected status in early December
 - « The MI-60 region will be ready at the end of the shutdown
 - « The Pre-Target area should be ready but alignment is a concern
 - « The absorber cooling system may be checked out
 - * not needed for low intensity operations
 - « The hadron and muon monitoring systems will be ready
 - « The Target Hall will not be ready until mid January
 - * Radioactive component handling practice & target chase cooling system
- Planning for low intensity beam to the NuMI absorber on December 3 - 4 and December 10 – 12 "Early Beam"
 - « Allows problem identification and resolution before the accelerator complex returns to normal operation
 - « First 3 steps in overall commissioning plan

Early Beam Plan

Goals

- « Extract 120 GeV protons (single batch) from the MI and transport to the NuMI absorber (1st weekend)
- « Time-in instrumentation and verify function (1st weekend)
- « Verify kicker uniformity (2nd weekend)
- « Check transport optics (2nd weekend)

Constraints

- « Prevent undue activation of the Target Hall pit that could delay work
- « MARS simulation shows minimal activation with < 1E14 protons and 48 hour cool-down
- We will commission using 3E11 protons every ~3 minutes

Early Beam Schedule

- Start NuMI study cycle on Dec 2 (Thur)
 - « Ramp NuMI magnets
 - « Verify Beam Permit System operation
- NuMI beam
 - « Friday Dec 3, 0900-2100
 - « Saturday Dec 4, 0900 2100
- Commissioning team from MI, NuMI, Ext. Beams, CERN

Team 1 Team 2

Peter Lucas Doug Jensen

Malika Meddahi (CERN) Al Russell

Gordon Koizumi Rick Ford

Sam Childress, Ldr. Craig Moore, Ldr.

Alberto Marchionni Dave Capista

Next Steps

- Commissioning will resume in mid January when the Target Hall is complete
- We expect to meet CD-4 in late January
- Physics data taking begins in February

Closing Comments

- This is an exciting time for NuMI and MINOS
 - « Culmination of 10 years of planning
 - « 40+ internal reviews, 14 Director's reviews, 14 DOE reviews
- NuMI is a visible project within the HEP community and DOE
 - « We are planning for an efficient startup